Wednesday, February 20, 2019

Prim's Algorithm implementation in C

#include <stdio.h>
#include <limits.h>
#include<stdbool.h>
// Number of vertices in the graph
#define V 5
 
// A utility function to find the vertex with 
// minimum key value, from the set of vertices 
// not yet included in MST
int minKey(int key[], bool mstSet[])
{
// Initialize min value
int min = INT_MAX, min_index,v;
 
for (v = 0; v < V; v++)
    if (mstSet[v] == false && key[v] < min)
        min = key[v], min_index = v;
 
return min_index;
}
 
// A utility function to print the 
// constructed MST stored in parent[]
int printMST(int parent[], int n, int graph[V][V])
{
int i;
printf("Edge \tWeight\n");
for ( i = 1; i < V; i++)
    printf("%d - %d \t%d \n", parent[i], i, graph[i][parent[i]]);
}
 
// Function to construct and print MST for 
// a graph represented using adjacency 
// matrix representation
void primMST(int graph[V][V])
{
    // Array to store constructed MST
    int parent[V],i; 
    // Key values used to pick minimum weight edge in cut
    int key[V],count; 
    // To represent set of vertices not yet included in MST
    bool mstSet[V]; 
 
    // Initialize all keys as INFINITE
    for (i = 0; i < V; i++)
        key[i] = INT_MAX, mstSet[i] = false;
 
    // Always include first 1st vertex in MST.
    // Make key 0 so that this vertex is picked as first vertex.
    key[0] = 0;     
    parent[0] = -1; // First node is always root of MST 
 
    // The MST will have V vertices
    for (count = 0; count < V-1; count++)
    {
        // Pick the minimum key vertex from the 
        // set of vertices not yet included in MST
        int u = minKey(key, mstSet),v;
 
        // Add the picked vertex to the MST Set
        mstSet[u] = true;
 
        // Update key value and parent index of 
        // the adjacent vertices of the picked vertex. 
        // Consider only those vertices which are not 
        // yet included in MST
        for (v = 0; v < V; v++)
 
        // graph[u][v] is non zero only for adjacent vertices of m
        // mstSet[v] is false for vertices not yet included in MST
        // Update the key only if graph[u][v] is smaller than key[v]
        if (graph[u][v] && mstSet[v] == false && graph[u][v] < key[v])
            parent[v] = u, key[v] = graph[u][v];
    }
 
    // print the constructed MST
    printMST(parent, V, graph);
}
 
 
// driver program to test above function
int main()
{
/* Let us create the following graph
        2 3
    (0)--(1)--(2)
    | / \ |
    6| 8/ \5 |7
    | /     \ |
    (3)-------(4)
            9         */
int graph[V][V] = {{0, 2, 0, 6, 0},
                    {2, 0, 3, 8, 5},
                    {0, 3, 0, 0, 7},
                    {6, 8, 0, 0, 9},
                    {0, 5, 7, 9, 0}};
 
    // Print the solution
    primMST(graph);
 
    return 0;
}

Output:

Edge    Weight
0 - 1   2
1 - 2   3
0 - 3   6
1 - 4   5

--------------------------------
Process exited after 0.168 seconds with return value 0
Press any key to continue . . .

Labels:

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home