Wednesday, February 6, 2019

Dijkstra's in C program

// A C program for Dijkstra's single source shortest path algorithm.
// The program is for adjacency matrix representation of the graph
 
#include <stdio.h>
#include <limits.h>
 
// Number of vertices in the graph
#define V 9
 
// A utility function to find the vertex with minimum distance value, from
// the set of vertices not yet included in shortest path tree
int minDistance(int dist[], int sptSet[])
{
   // Initialize min value
   int min = INT_MAX, min_index,v;
 
   for (v = 0; v < V; v++)
     if (sptSet[v] == 0 && dist[v] <= min)
         min = dist[v], min_index = v;
 
   return min_index;
}
 
// A utility function to print the constructed distance array
int printSolution(int dist[], int n)
{
int i;
   printf("Vertex   Distance from Source\n");
   for (i = 0; i < V; i++)
      printf("%d tt %d\n", i, dist[i]);
}
 
// Function that implements Dijkstra's single source shortest path algorithm
// for a graph represented using adjacency matrix representation
void dijkstra(int graph[V][V], int src)
{
     int dist[V],i,count;     // The output array.  dist[i] will hold the shortest
                      // distance from src to i
 
     int sptSet[V],v; // sptSet[i] will be true if vertex i is included in shortest
                     // path tree or shortest distance from src to i is finalized
 
     // Initialize all distances as INFINITE and stpSet[] as false
     for ( i = 0; i < V; i++)
        dist[i] = INT_MAX, sptSet[i] = 0;
 
     // Distance of source vertex from itself is always 0
     dist[src] = 0;
 
     // Find shortest path for all vertices
     for ( count = 0; count < V-1; count++)
     {
       // Pick the minimum distance vertex from the set of vertices not
       // yet processed. u is always equal to src in the first iteration.
       int u = minDistance(dist, sptSet);
 
       // Mark the picked vertex as processed
       sptSet[u] = 1;
 
       // Update dist value of the adjacent vertices of the picked vertex.
       for (v = 0; v < V; v++)
 
         // Update dist[v] only if is not in sptSet, there is an edge from 
         // u to v, and total weight of path from src to  v through u is 
         // smaller than current value of dist[v]
         if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX 
                                       && dist[u]+graph[u][v] < dist[v])
            dist[v] = dist[u] + graph[u][v];
     }
 
     // print the constructed distance array
     printSolution(dist, V);
}
 
// driver program to test above function
int main()
{
   /* Let us create the example graph discussed above */
   int graph[V][V] = {{0, 4, 0, 0, 0, 0, 0, 8, 0},
                      {4, 0, 8, 0, 0, 0, 0, 11, 0},
                      {0, 8, 0, 7, 0, 4, 0, 0, 2},
                      {0, 0, 7, 0, 9, 14, 0, 0, 0},
                      {0, 0, 0, 9, 0, 10, 0, 0, 0},
                      {0, 0, 4, 14, 10, 0, 2, 0, 0},
                      {0, 0, 0, 0, 0, 2, 0, 1, 6},
                      {8, 11, 0, 0, 0, 0, 1, 0, 7},
                      {0, 0, 2, 0, 0, 0, 6, 7, 0}
                     };
 
    dijkstra(graph, 0);
 
    return 0;
}


OutPut:

Vertex   Distance from Source
0 tt 0
1 tt 4
2 tt 12
3 tt 19
4 tt 21
5 tt 11
6 tt 9
7 tt 8
8 tt 14

--------------------------------

Labels:

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home