implementation of kruskal's algorithm in C++
// C++ program for Kruskal's algorithm to find Minimum
// Spanning Tree of a given connected, undirected and
// weighted graph
#include<bits/stdc++.h>
using namespace std;
// Creating shortcut for an integer pair
typedef pair<int,
int> iPair;
// Structure to represent a graph
struct Graph
{
int V, E;
vector<
pair<int, iPair> > edges;
// Constructor
Graph(int V, int
E)
{
this->V =
V;
this->E =
E;
}
// Utility
function to add an edge
void addEdge(int
u, int v, int w)
{
edges.push_back({w, {u, v}});
}
// Function to
find MST using Kruskal's
// MST algorithm
int kruskalMST();
};
// To represent Disjoint Sets
struct DisjointSets
{
int *parent, *rnk;
int n;
// Constructor.
DisjointSets(int
n)
{
// Allocate
memory
this->n =
n;
parent = new
int[n+1];
rnk = new
int[n+1];
// Initially,
all vertices are in
// different
sets and have rank 0.
for (int i =
0; i <= n; i++)
{
rnk[i] =
0;
//every
element is parent of itself
parent[i]
= i;
}
}
// Find the parent
of a node 'u'
// Path
Compression
int find(int u)
{
/* Make the
parent of the nodes in the path
from
u--> parent[u] point to parent[u] */
if (u !=
parent[u])
parent[u]
= find(parent[u]);
return
parent[u];
}
// Union by rank
void merge(int x,
int y)
{
x = find(x), y
= find(y);
/* Make tree
with smaller height
a subtree
of the other tree */
if (rnk[x]
> rnk[y])
parent[y]
= x;
else // If
rnk[x] <= rnk[y]
parent[x]
= y;
if (rnk[x] == rnk[y])
rnk[y]++;
}
};
/* Functions returns
weight of the MST*/
int Graph::kruskalMST()
{
int mst_wt = 0; //
Initialize result
// Sort edges in
increasing order on basis of cost
sort(edges.begin(), edges.end());
// Create disjoint
sets
DisjointSets
ds(V);
// Iterate through
all sorted edges
vector<
pair<int, iPair> >::iterator it;
for
(it=edges.begin(); it!=edges.end(); it++)
{
int u =
it->second.first;
int v =
it->second.second;
int set_u =
ds.find(u);
int set_v =
ds.find(v);
// Check if
the selected edge is creating
// a cycle or
not (Cycle is created if u
// and v
belong to same set)
if (set_u != set_v)
{
// Current
edge will be in the MST
// so
print it
cout
<< u << " - " << v << endl;
// Update
MST weight
mst_wt +=
it->first;
// Merge
two sets
ds.merge(set_u, set_v);
}
}
return mst_wt;
}
// Driver program to test above functions
int main()
{
/* Let us create
above shown weighted
and unidrected
graph */
int V = 9, E = 14;
Graph g(V, E);
// making above shown graph
g.addEdge(0, 1,
4);
g.addEdge(0, 7,
8);
g.addEdge(1, 2,
8);
g.addEdge(1, 7,
11);
g.addEdge(2, 3,
7);
g.addEdge(2, 8,
2);
g.addEdge(2, 5,
4);
g.addEdge(3, 4,
9);
g.addEdge(3, 5,
14);
g.addEdge(4, 5,
10);
g.addEdge(5, 6,
2);
g.addEdge(6, 7,
1);
g.addEdge(6, 8,
6);
g.addEdge(7, 8,
7);
cout <<
"Edges of MST are \n";
int mst_wt =
g.kruskalMST();
cout <<
"\nWeight of MST is " << mst_wt;
return 0;
}
Edges of MST are
6 - 7
2 - 8
5 - 6
0 - 1
2 - 5
2 - 3
0 - 7
3 - 4
Weight of MST is 37
Labels: DS through C++ lab